Warum ein Barcamp zum wissenschaftlichen Arbeiten?

Ein Gastbeitrag von Daniela Keller

Ich bin keine Expertin für wissenschaftliches Arbeiten. Doch in meiner Arbeit als Statistikberaterin habe ich täglich mit Forschenden und wissenschaftlichen Projekten zu tun: angefangen von der Seminararbeit über die Bachelor- und Masterabeit bis hin zur Promotion und zum Forschungsprojekt.

Dabei sehe ich, vor welchen Herausforderungen (angehende) Wissenschaftler*innen stehen – und es geht nicht nur um Statistik. 🙂

Themen wie Zeitmanagement, Organisation, Finanzierung, Motivation, wissenschaftliches Schreiben, Methodenwissen, Publikationsdruck, fachliche Kritik, gute wissenschaftliche Praxis sind nur einige Bereiche, mit denen sie sich auseinandersetzen müssen. Auch ungesunde Abhängigkeiten, Hierarchien und Befindlichkeiten spielen eine Rolle.

Ein extrem spannendes Feld mit viel Potential für Wachstum und Entwicklung.

Wie gesagt, ich kann hier bei den meisten dieser Themen nicht weiterhelfen. Nur wenn es um Statistik geht, bin ich die Richtige.

Trotzdem fasziniert mich das wissenschaftliche Arbeiten und alles drumherum. Außerdem liebe ich es, Menschen dabei zu helfen, das Beste aus sich herauszuholen und ihr Potential zu entfalten.

Was ich ebenfalls liebe, sind Barcamps. Ein Barcamp ist eine offene, partizipative Veranstaltung ohne vorab festgelegten Ablauf und ohne feste Redner*innen. Meist hat ein Barcamp ein bestimmtes grobes Thema als Fokus. Die Idee ist, Wissen und Erfahrung zu diesem Thema in einer lockeren Atmosphäre auszutauschen und voneinander zu lernen.

Ich habe die Erfahrung gemacht, dass auf Barcamps mit ihrer hierachiefreien Struktur und der offenen Atmosphäre ganz tolle Dinge, Inspiration und Anstöße für Wachstum entstehen können.

Deshalb kam mir die Idee, ein Barcamp mit dem Fokus wissenschaftliches Arbeiten zu veranstalten. Und jetzt ist es endlich so weit.

Das erste Barcamp zum wisssenschaftlichen Arbeiten in Würzburg

Am 11. und 12. Oktober 2024 findet in Würzburg das erste ScienceCamp statt – ein Barcamp mit dem Fokus wissenschaftliches Arbeiten.

Eingeladen sind alle, die sich in irgend einer Form mit wissenschalftichem Arbeiten beschäftigen. Zum Beispiel Studierende, Promovierende, Lehrende, Forschende, (angehende) Profs, Organisatoren, Coaches, Beraterinnen in dem Bereich, Lektoren, Verlegerinnen usw.

Egal welche Disziplin und egal welches Level.

Es sollen Leute zusammenkommen, die offen für einen wertschätzenden Austausch auf Augenhöhe sind.

Für diesen Austausch ist das Format des Barcamps perfekt geeignet. Es gibt keine Hierarchien, jede und jeder ist Teilnehmende*r und Beitragende*r gleichzeitig.

Es gibt auch vorab keine Agenda; die Sessions werden vor Ort geplant und zusammengestellt. Jede und jeder kann freiwillig und spontan entscheiden, ob er/sie eine Session anbietet bzw. welche Sessions er/sie besuchen möchte.

Dadurch entsteht genau das Programm, das für die gerade Anwesenden am passendsten ist. Es findet keine „Druckbetankung“ mit vorgefertigten Inhalten statt, die danach sowieso schnell wieder vergessen sind.

Auf dem Bild sieht man drei Menschen, die sich miteinander unterhalten. Die Köpfe sind auf dem Bildausschnitt nicht zu sehen. In Zentrum des Bildes sind zwei Frauen mit mittellangen braunen Haaren - eine trägt eine Bluse, die andere eine Jeansjacke - die beim Reden gestikulieren. Der Mann, der auf der linken Bildseite weiter vorne sitzt, trägt ein kariertes Hemd und hält einen Coffe To-go-Becher in der Hand. Im Hintergrund befinden sich eine Wiese und Pflanzen.

Wie kann so eine Session beim Barcamp aussehen?

Eine Session kann ganz unterschiedlich ausfallen. Möglich sind Inputs, Hands-On-Workshops, Fragerunden, Diskussionen und vieles mehr. Thematisch geht alles, was zum wissenschaftlichen Arbeiten passt.

Hier ein paar Beispiele:

 Tony, Bachelor-Student, könnte so eine Session vorschlagen:

Ich schreibe meine erste wissenschaftliche Arbeit und habe eine Frage: Wie organisiert ihr eure Literatur? Wer hat hier Erfahrung und kann mir zu dem Thema Tipps geben?“

Hier würden sich dann Personen melden, die entweder Erfahrung haben in der Organisation ihrer Literatur und das gern weitergeben möchten. Oder vielleicht auch eine Beraterin, die sich gut mit Softwaretools dazu auskennt und davon erzählen kann. Vielleicht auch Gleichgesinnte wie Tony, die die gleiche Frage haben und sich deshalb in die Session einklinken.

Maria promoviert im dritten Jahr und formuliert ihren Sessionvorschlag so:

„Ich habe sehr gute und sehr schlechte Erfahrungen mit Reviews gemacht und möchte diese mit euch teilen. Wer hat daran Interesse?“

Das wird Personen ansprechen, die zum ersten Mal eine Publikation planen und mehr darüber erfahren möchten, wie der Prozess abläuft und mit was man im Review rechnen muss. Außerdem werden hier auch Leute teilnehmen, die selbst schon in Journals publiziert haben und ihre Erfahrungen gern weitergeben möchten.

Hannah stellt sich und ihre mögliche Session so vor:

„Ich bin Expertin für Zeitmanagement und arbeite vor allem mit Wissenschaftlerinnen. Gern gebe ich euch in einer Session Tipps für euer individuelles Zeitmanagement. Wer mag in so eine Session kommen?“

Hier sind ganz klar Leute angesprochen, die ihr Zeitmanagement verbessern möchten. Und wer will das nicht? 🙂

Ollis Sessionvorschlag lautet so:

„Ich will meine Diss als Buch veröffentlichen. Wer hat damit schon Erfahrungen oder ist auch an dem Thema interessiert und will sich dazu austauschen?“

In dieser Session werden Leute zusammenkommen, die ebenfalls über eine Buchveröffentlichung nachdenken. Und natürlich auch solche, die das schon hinter sich haben und ihr wertvolles Wissen aus der Praxis beitragen können. Eventuell kommen auch Lektoren oder Verlegerinnen dazu, die zu diesem Thema Insiderwissen mitbringen.

Wichtig: Das sind alles erst einmal nur Vorschläge. Sie werden von den Personen vor der ganzen Gruppe zunächst kurz vorgebracht. Wenn ein paar positive Reaktionen aus dem Plenum kommen, wird die Session in den Plan mit aufgenommen.

Es finden immer mehrere Sessions gleichzeitig statt und es gibt mehrere Slots pro Tag, so dass ein buntes und sehr vielfältiges Programm entsteht.

Und was passiert noch an einem Barcamp?

Um die Sessions herum findet viel Austausch und Netzwerken statt. Und das bei leckeren Getränken und Essen (auch vegan etc.). Die wertschätzende Atmosphäre und der offene Rahmen machen es aus meiner Erfahrung sehr leicht, in Kontakt zu kommen.

Außerdem ist nichts verpflichtend. Wenn Sie also gerade mal keine für sich passende Session finden oder eine Pause brauchen, dann suchen Sie sich eine ruhige Ecke zum Entspannen. Oder Sie haben eine interessante Person kennengelernt, mit der Sie sich lieber eins zu eins intensiv austauschen möchten. Auch dafür ist Platz.

Die Veranstaltung ist barrierefrei und Sie können nach Absprache auch Kinder mitbringen. Es gibt eine kleine Spielecke (allerdings keine Kinderbetreuung). Falls Sie weitere Unterstützung brauchen, melden Sie sich gern bei mir.

Wo finde ich mehr Infos zum Barcamp?

Auf dieser Seite finden Sie noch ausführlichere Infos und können Ihr Ticket buchen:

https://www.statistik-akademie.de/sciencecamp/

Bis 30. Juni 2024 gibt es noch den Frühbucherpreis. Und für eingeschriebene Personen (Studierende/Promovierende) gilt außerdem ein vergünstigter Preis.

Ich freue mich sehr auf das Barcamp und auf Sie!

Über mich:

Foto von Daniela Keller

Ich, Daniela Keller, bin leidenschaftliche Statistik-Expertin und unterstütze als statistische Beraterin

Studierende, Promovierende und Wissenschaftler*innen dabei, die Statistik für ihr Projekt zu verstehen und richtig umzusetzen.

Während meines Studiums der Diplom-Mathematik gründete ich mit Kommilitonen eine studentische statistische Beratung und arbeitete anschließend selbständig in diesem Feld.

Jetzt biete ich seit vielen Jahren Einzelberatungen, Gruppenprogrammen und Workshops an und habe mit der Statistik-Akademie einen Online-Mitgliederbereich zum Statistik-Lernen geschaffen.

In meinem Blog und auf meinem YouTube-Kanal finden Sie leicht verständlich aufbereitetes Statistikwissen für die Praxis.

Webseite: https://statistik-und-beratung.de/

Statistik-Akademie: https://www.statistik-akademie.de/akademie/

YouTube: https://www.youtube.com/c/StatistikAkademie

Instagram: https://www.instagram.com/daniela_keller_statistik

LinkedIn: https://www.linkedin.com/in/daniela-keller-b0909a58/

Immer auf dem Laufenden bleiben?

Melden Sie sich für den Newsletter an! Sie werden benachrichtigt, wenn ein neuer Beitrag auf dem Blog erscheint, und können auch ein wenig hinter die Kulissen blicken.

Von Schatten, Wahrheit und Verantwortung: Wissenschaftliches Arbeiten als philosophische Reise

Ein Gastbeitrag von Dr. Nicolaus Wilder

Als Lehrender in der Allgemeinen Pädagogik erlebe ich die spannendsten Momente, wenn ich Platons Höhlengleichnis mit den Studierenden diskutiere und darüber die eigene Bildungsbiografie reflektiere. Aber dazu später mehr.

Entstanden etwa um 375 v. Chr. im antiken Griechenland ist Platons Höhlengleichnis „bis heute die tiefste und eindringlichste Analyse des Bildungsgeschehens geblieben, die sich auffinden läßt“ (Ballauff 1969, S. 91). Auch wenn Platon erkenntnistheoretisch heute nur noch von ideengeschichtlicher Bedeutung ist, so trifft dies keineswegs auf seine bildungstheoretischen Überlegungen zu. Gerade in dem gegenwärtig ausgerufenen Zeitalter der Künstlichen Intelligenz scheinen diese aktueller und relevanter denn je zu sein.

Doch was hat das mit der Vermittlung von wissenschaftlichem Arbeiten zu tun? Bei Platon im Grunde alles: Während Bildung (paideia) bei Platon ein umfassender Prozess der Entwicklung und Formung der Seele von innen und außen ist, der auf die Erkenntnis des Wahren, Guten und Schönen abzielt, ist Wissenschaft (epistēmē) die methodische Erkenntnis dieser höheren Wahrheiten selbst. Bildung also beschreibt den Weg zur Wissenschaft. Sie ist die Formung genau derjenigen Seele, die eine Wissenschaftlerin oder ein Wissenschaftler zur wahren Erkenntnis benötigt. Wissenschaftliches Arbeiten zu lehren bedeutet damit nichts anderes als die Ermöglichung von Bildungsprozessen hin zu einer wissenschaftlichen Haltung. Und was dieser Weg konkret bedeutet, beschreibt das Höhlengleichnis eindrücklich. Drei – hier nur analytisch getrennte, aber eigentlich stark miteinander verwobene – Aspekte scheinen mir dabei von besonderer zeitloser Aktualität zu sein:

1) das Streben nach Wahrheit und Gerechtigkeit

2) die selbstreflexive Erkenntnis des eigenen Schattendaseins und

3) die Aufgabe, das private und, vielleicht noch wichtiger, das öffentliche Leben zu verbessern

Diese gilt es im Folgenden holzschnittartig zu skizzieren.

Das Streben nach Wahrheit und Gerechtigkeit

Wissenschaft ist bei Platon nicht ohne eine teleologische Ausrichtung auf Wahrheit und Gerechtigkeit zu denken, wobei Gerechtigkeit im Grunde nur eine spezielle, aber für Platon die höchste, Wahrheit darstellt. Eine Wissenschaft, die nicht nach Wahrheit strebt, verkommt zu bloßer Rhetorik – Platons Kritik an den Sophisten seiner Zeit. Dieser Aspekt ist sicher am engsten verknüpft mit Platons Ideenlehre, also der Vorstellung, dass es ein Reich höherer, unveränderlicher und ewig wahrer Ideen gibt, von denen alles sinnlich Wahrnehmbare nur unvollkommene Manifestationen sind. Diese absoluten Ideen, die Platon grundsätzlich – jedoch tief unter falschen Vorstellungen verborgen – im Menschen angelegt sieht, über einen mühsamen Reflexionsprozess freizulegen, ist für ihn wesentliche Aufgabe der Wissenschaft, da sich daran alles weitere Handeln orientiert, auch das praktische. Diesen unmittelbaren Zusammenhang illustriert Platon wie folgt.

„Schließlich aber kam ich zu der Überzeugung, daß alle jetzigen Staaten samt und sonders politisch verwahrlost sind, denn das ganze Gebiet der Gesetzgebung liegt in einem Zustand darnieder, der ohne eine ans Wunderbare grenzende Veranstaltung im Bunde mit einem glücklichen Zufall nahezu heillos ist. Und so sah ich mich denn zurückgedrängt auf die Pflege der echten Philosophie, der ich nachrühmen konnte, daß sie die Quelle der Erkenntnis ist für alles, was im öffentlichen Leben sowie für den Einzelnen als wahrhaft gerecht zu gelten hat. Es wird also die Menschheit, so erklärte ich, nicht eher von ihren Leiden erlöst werden, bis entweder die berufsmäßigen Vertreter der echten und wahren Philosophie zur Herrschaft im Staate gelangen oder bis die Inhaber der Regierungsgewalt in den Staaten infolge einer göttlichen Fügung sich zu ernstlichen Beschäftigung mit der echten Philosophie entschließen.“

(Platon, VII. Brief, 326ab)

Platon, eigentlich angetreten, um politisch aktiv zu werden, „erfüllt von dem Drang nach staatsmännischer Betätigung“ (ebd.), stellt bei seiner kritischen Auseinandersetzung basierend auf seiner praktischen Erfahrung also fest, dass alle Staaten im Grunde ungerecht sind. Es fehlen gänzlich die Rahmenbedingungen, um auch nur die Möglichkeit zu haben, durch politisches Handeln den Staat verbessern zu können. Zur notwendigen Bedingung, um überhaupt eine Form von Handlungsmächtigkeit herzustellen, wird die Klärung der Frage, was Gerechtigkeit eigentlich ist. Nur auf Grundlage der Auseinandersetzung mit dieser Frage lässt sich die Gesellschaft entsprechend verbessern.

Das Zitat verdeutlicht mehrere Aspekte:

1) Am Anfang steht die radikale Reflexion des Ist-Zustandes.

2) Um den Ist-Zustand zu verändern, bedarf es der Formulierung einer wahren – oder etwas weniger platonisch ausgedrückt: begründeten – Alternative und

3) Wissenschaft hat eine hochgradige gesellschaftliche Orientierungsfunktion und ist damit genuin normativ zu denken. Eine wertfreie Wissenschaft wäre für Platon wahrscheinlich wertlos.

Auch wenn wir Platons Absolutheitsanspruch an Wahrheit heute überwiegend nicht mehr so teilen würden, sondern Wahrheit eher korrespondenz- (eine Aussage ist dann wahr, wenn sie mit der Wirklichkeit übereinstimmt), kohärenz- (eine Aussage ist dann wahr, wenn sie in einem System von Aussagen keine Widersprüche erzeugt) oder konsenstheoretisch (eine Aussage ist dann wahr, wenn sich darauf geeinigt wurde) denken, so bleibt das Streben nach einer Form von Wahrheit weiterhin konstitutiv für die Wissenschaft. Sonst ließe sich nicht plausibel von so etwas wie Fake News sprechen. Die Verantwortung einer normativen gesellschaftlichen Orientierungsfunktion lehnen große Teile der Wissenschaft jedoch gegenwärtig ab, was aber gerade in Zeiten großer gesellschaftlicher Transformationsprozesse nicht unproblematisch ist.

Auf dem Bild sieht man eine große Höhle, aus deren Aus-/Eingang Sonnenlicht hineinstrahlt. An den Wänden stehen Formeln und Zahlen. Steingebäude mit Säulen und Statuen sind an den Wänden der Höhle zu sehen. Einige Menschen laufen aus der Höhle hinaus oder hinein. Eine Gestalt steht etwas im Vordergrund auf einem Felsvorsprung und schaut dem Licht entgegen. Das Bild veranschaulicht das Höhlengleichnis.

Die selbstreflexive Erkenntnis des eigenen Schattendaseins

Die fundamentale Bedingung für Wissenschaft ist bei Platon die Erkenntnis der eigenen Schatten und Echos. Wir sind alle gefesselt an das, was uns vorgelebt wird, die Werte, die wir teilen, die Sprache, die wir sprechen, die Entitäten, an die wir glauben. Heute würde man das mit dem Begriff der Sozialisation beschreiben, dem Aufwachsen in einer Gesellschaft mit einer spezifischen Perspektive auf Welt und Selbst. Und wir glauben nur zu gerne, dass diese Dinge, also unsere Überzeugungen, auch wahr sind.

In meinen Seminaren ist das immer einer der spannendsten Momente, wenn ich frage: Wofür stehen denn in dem Gleichnis die Menschen in der Höhle? Wenn man den Diskussionen genug Zeit gibt, kommt es häufig zu folgendem Verlauf: „Na ja, die Menschen damals halt, die wussten ja noch nicht so viel.“ Oder: „Kinder, Platon beschreibt da den Prozess des Erwachsenwerdens.“ Irgendwann kommt es dann aber auch dazu, dass die Teilnehmenden sagen: „Aber es gibt doch heute auch erwachsene Menschen, die nur in Ihrer Bubble leben (aber das sind natürlich nicht wir hier an der Uni).“ Und in seltenen Fällen endet es in der fundamentalen Einsicht: „Diese Menschen stehen für uns alle. Wir alle sind gefesselt an bestimmte Sichtweisen.“ Was Platon von uns auf dem Weg in die Wissenschaft verlangt, ist nicht weniger, als an all diesen Dingen zu zweifeln, an die wir glauben und von denen wir überzeugt sind – eben unserer Bubble, in der wir uns so wohlfühlen. Wir sollen uns auf die Suche nach der Wahrheit hinter den Schatten und Echos machen. Kein Wunder also, dass er diesen Prozess als zwang- und schmerzhaft beschreibt. Diesen Weg geht man weder freiwillig noch allein. Er muss begleitet werden und genau das ist bei Platon die Aufgabe der Pädagogen.

Der Weg zur Wissenschaft ist harte Arbeit am Selbst, dem eigenen Denken, Fühlen, Handeln und Urteilen, immer in Bezug auf das eigene Mensch-Welt-Verhältnis.

Diese fundamentale Dimension kritischer Selbstreflexion ist heute – auch in der Wissenschaft – verkümmert zu der Phrase des „kritischen Denkens“. In der Regel meint das ein kritisches Denken über die anderen, weil die eigene Position für die richtige, die wahre, die absolute gehalten wird. Platon aber meint das Gegenteil. Kritisches Denken meint zuvorderst ein kritisches Reflektieren des Selbst. Warum denke, fühle, glaube, meine ich, was ich denke, fühle, glaube oder meine? Und ich mache mich auf die Suche danach, ob es nicht auch anders sein könnte. Es geht Platon um die Überwindung der eigenen Ich-Bezogenheit.

In der neueren Wissenschaftstheorie ist genau das der zentrale Gedanke, der Popper bei der Idee der Falsifikation antrieb: Die Erkenntnis, dass der Mensch sich in seiner Meinung immer irren kann und wir uns genau deswegen auf die Suche nach dem machen müssen, was wir nicht glauben. Auch dieser Gedanke ist verkümmert zu dem Verfahren einer standardisierten Nullhypothesenformulierung. Aber es ist etwas ganz anderes, formal zu sagen, es gibt einen Schwan, der nicht schwarz ist und die Daten darauf zu testen, um zu aller Überraschung festzustellen, dass alle Schwäne weiß sind, oder sich auf den beschwerlichen Weg zu machen, den einen nicht schwarzen Schwan zu finden, von dem man überzeugt ist, dass es ihn nicht gibt.

Die Aufgabe, das private und das öffentliche Leben zu verbessern

Für Platon endet Wissenschaft aber nicht mit der Erkenntnis, mit dem Ausruhen auf der Insel der Seligen. Der härteste Teil beginnt erst dann. Aus der Einsicht in Wahrheit und Gerechtigkeit folgt die Notwendigkeit, auch andere daran teilhaben zu lassen und sich für eine Verbesserung des Lebens aller einzusetzen. Im Gleichnis wird das dargestellt durch den Rückgang in die Höhle und das Herausführen der in der Höhle Verbliebenen. Dieser Prozess ist durch größte Widerstände geprägt unter Bedrohung des eigenen Lebens, was von Platon an dieser Stelle keineswegs metaphorisch gemeint ist, sondern auf Sokrates Schicksal Bezug nimmt. Das ist die Pflicht der Wissenschaft. Sie darf sich nicht auf der Erkenntnis ausruhen, nur um am Ende zu sagen, „Ich hab es ja gewusst!“, sondern sie ist verpflichtet, Gesellschaft mitzugestalten. Wissenschaft ist von der Gesellschaft für die Gesellschaft und hat somit eine große gesellschaftliche Verantwortung. Bildung und Wissenschaft sind bei Platon also nicht als akademisches Spiel mit abstrakten Wissensbeständen gedacht, als Erkenntnis um der Erkenntnis willen, sondern hochgradig praktisch und politisch. Sie dienen der Verbesserung des Lebens.

Gerade jetzt, wo uns die potenziellen Gefahren Künstlicher Intelligenz langsam zu dämmern beginnen, in den ungeahnten Möglichkeiten, beliebige authentisch anmutende Deep Fakes zu erzeugen, Demokratien zu manipulieren, die Logik von Schatten und Echos nicht nur zu reproduzieren, sondern sogar zu verstärken, es im Grunde keine Instanz mehr gibt, die uns die Unterscheidung zwischen Wissen und Meinung abnimmt, scheint diese von Platon vorgeschlagene kritisch-reflexive Haltung des Ichs wichtiger denn je, genau wie die gesellschaftliche Verantwortung und die Fähigkeit in begründeten Alternativen oder gesellschaftlichen Utopien zu denken. Wie könnte eine Gesellschaft aussehen, in der KI im Dienst von Mensch und Gerechtigkeit steht? Antworten auf solche Fragen zu formulieren, ist genuine Aufgabe der Wissenschaft.

Die Lehre wissenschaftlichen Arbeitens kann in der Auseinandersetzung mit Platon und insbesondere seinem Höhlengleichnis einen wichtigen Beitrag leisten. Sie befähigt zum Eröffnen eben dieser Haltung, wenn sie nicht reduziert wird auf das Auswendiglernen bestimmter methodisch-dogmatischer Verfahren.

Literatur

Ballauff, T. (1969). Pädagogik. Eine Geschichte der Bildung und Erziehung. Band 1: Von der Antike bis zum Humanismus. Alber.

Foto von Dr. Nicolaus Wilder
https://www.olafbathke.de/

Dr. Nicolaus Wilder ist wissenschaftlicher Mitarbeiter in der Abteilung Allgemeine Pädagogik an der Christian-Albrechts-Universität zu Kiel, Gründungsmitglied des VK:KIWA (Virtuelles Kompetenzzentrum für Künstliche Intelligenz und wissenschaftliches Arbeiten) sowie Vorstandsmitglied des Zentrums für Konstruktive Erziehungswissenschaft e. V.

Immer auf dem Laufenden bleiben?

Melden Sie sich für den Newsletter an! Sie werden benachrichtigt, wenn ein neuer Beitrag auf dem Blog erscheint, und können auch ein wenig hinter die Kulissen blicken.

KI-FOMO

In schwachem Licht sieht man einen Bahnsteig, auf dem eine Person mit Rollkoffer steht und einem fortfahrenden Zug hinterherblickt.
generiert mit ChatGPT-4 am 01.02.2024, und ja, der Zug fährt neben dem Gleis 😊

Geht es Ihnen auch so, wenn Sie an KI denken?

Der Bahnsteig ist leer, der Zug ist abgefahren, alle anderen sind weg. Nur Sie stehen noch da und sind – wahrscheinlich – der einzige Mensch auf Erden, der noch nie mit KI-Tools gearbeitet hat. Na ja, oder zumindest haben Sie das nicht systematisch getan. Nur hier und da mal ein bisschen, und dann eher auch für private Zwecke. Vielleicht haben Sie auch wieder damit aufgehört, weil Sie mit den Ergebnissen nichts anfangen konnten, und Sie haben sich gefragt, ob das schon alles war. Wieso dann der ganze Hype? Oder, Moment mal, haben Sie vielleicht etwas falsch gemacht?

Sicher nutzen alle anderen die Tools schon systematisch und noch dazu sehr versiert. Haben schon herausgefunden, wie das funktioniert und wie sie sich zurechtfinden, in diesem Wust an Informationen über immer neue Möglichkeiten. Wie man richtig promptet und der KI Inhalte entlockt, mit denen sich wirklich etwas anfangen lässt.

KI-FOMO? Ja, das ist sie: die Angst, etwas zu verpassen. Nicht ausreichend Bescheid zu wissen. Was, wenn alle anderen plötzlich besser, toller, produktiver sind, weil sie eben verstanden haben, wie es geht?

Alle anderen?

Ganz sicher nicht.

Lassen Sie sich gesagt sein: Da draußen gibt es noch sehr viele Menschen, die sich nicht eingehend mit KI-Tools befasst haben. Oder genauer: Da draußen gibt es noch sehr viele Lehrende, die sich nicht eingehend – oder gar nicht – mit der Nutzung von KI-Tools für den Einsatz in Lehre und Forschung befasst haben.

Die reden nur nicht über ihre Nicht-Nutzung. Es ist en vogue, über KI Bescheid zu wissen, und diejenigen, die nicht mithalten können, reden eben nicht. Sie sitzen dabei und sind stumm. Denn über ein Jahr, nachdem die breite Verfügbarkeit von ChatGPT den Hype ausgelöst hat, erscheint es seltsam, sich noch überhaupt nicht mit diesem Thema beschäftigt zu haben.

Ist es zu spät für den Einstieg?

Ganz sicher nicht.

Das Feld ändert sich kontinuierlich und, wie viele es empfinden, beängstigend schnell. Das ist eine gute Nachricht, so paradox es klingt. Die Halbwertszeit des Wissens hier ist gering, weil die technologische Entwicklung so rasant ist. Wenn Sie jetzt einsteigen und aufholen möchten, müssen Sie also nicht alles „nachlernen“, bis Sie auf dem aktuellen Stand sind. Sie überspringen einfach das, was jetzt schon nicht mehr gilt. Damit haben sich die Früheinsteiger wochen- und monatelang befasst, jetzt ist es nicht mehr nötig. Ich finde das ein wenig vergleichbar mit anderen technischen Skills: Einer Person, die nie in der Zeit an einem PC gearbeitet hat, in der Dateinamen noch maximal acht Zeichen lang sein durften, fehlt dieses Wissen später nicht. Sie musste kein ausgeklügeltes System entwerfen, mit dem sie ihre Dateien benennen und vor allem wiederfinden kann. Genauso wenig muss eine Person, die heute in die Welt der KI einsteigt, wissen, mit welchen (viel spezifischeren) Prompts sie vor einem Jahr zum gewünschten Output gelangt wäre, wenn heute schon sehr viel durch Conversational Prompting erreicht werden kann. Ebenso ist das Wissen über bestimmte Workflows irrelevant, die noch vor kurzer Zeit üblich waren: Heute muss ich nicht mehr wissen, dass ich mir in ChatGPT einen Prompt formulieren lassen kann, um ihn in einem Bildgenerierungs-Tool zu verwenden. Denn das inzwischen multimodale ChatGPT erzeugt das Bild einfach selbst (lassen wir für dieses Beispiel außen vor, dass es natürlich Unterschiede zwischen den Tools gibt).

Die Grundlagen hingegen sind immer noch die gleichen wie vor Monaten. DIE müssen Sie kennen. Und die sind schnell erklärt. In meinen Workshops verwenden wir im ersten Angang meist nicht wesentlich mehr als eine viertel Stunde darauf. Natürlich kommen wir im Verlauf immer wieder darauf zu sprechen, aber für den Einstieg genügt es, sich kurz über die Basics zu verständigen.

Die absoluten Basics über textgenerierende KI

Bringen wir es auf den Punkt:

  • Ein textgenerierende KI-Tool ist kein Lexikon.
  • Ein textgenerierende KI-Tool ist keine Suchmaschine.
  • Ein textgenerierende KI-Tool ist kein Mensch.

Dazu noch ein paar Worte zu Datenschutz und Sicherheit. That’s it.

Wenn diese Grundlagen klar sind, können wir in den Tool-Test starten und einfach MACHEN.

KI-Tools beim wissenschaftlichen Arbeiten

In meinen Workshops sitzen vor allem zwei Zielgruppen. Ich führe zum einen KI-Schreibwerkstätten mit Studierenden durch, zum anderen erarbeite ich mit Lehrenden, wie sie – jetzt, da KI-Tools nun einmal existieren und auch nicht mehr verschwinden werden – wissenschaftliches Arbeiten lehren können. Die Inhalte dieser Workshops lassen sich nachvollziehbarerweise nicht von den Eigeninteressen der Lehrenden lösen. Sie wollen wissen, wie sie ihre eigenen Schreibaktivitäten durch den Einsatz von KI „optimieren“.

Es ist natürlich ein berechtigtes Anliegen, das eigene Schreiben entwickeln zu wollen. Mich wundert nur die Vehemenz, mit der es manchmal vorgetragen wird. Da entsteht bei mir schnell der Eindruck, als sollen die KI-Tools jetzt richten, was schon seit Jahren im Argen liegt. Schreibprozesse, die als nicht angenehm und als zu wenig produktiv empfunden werden, sollen nun mit Hilfe der KI-Tools beschleunigt werden.

Hier kommt auch wieder KI-FOMO ins Spiel. Was, wenn alle anderen besser, toller und schneller Texte produzieren? Wenn sie mehr publizieren und dadurch ihre akademische Karriere beschleunigen? Da hätten jene das Nachsehen, die keine KI-Tools nutzen.

Auch diesen Druck verstehe ich. Dennoch halte ich die Frage nach dem optimalen KI-Tool-Workflow für zu kurz gedacht. Damit meine ich die Frage, die mir in meinen Workshops regelmäßig gestellt wird: Wie bilde ich meinen Schreibworkflow möglichst lückenlos durch KI-Tools ab?

Analyse vor Lösung, ob mit oder ohne KI

Schreibprozesse sind individuell und damit sehr unterschiedlich. Wie immer fasse ich den Begriff des Schreibens weit und verstehe darunter auch vor- und nachgelagerte Tätigkeiten wie Literaturrecherche oder Überarbeiten. (Nicht dass hier ein ungewollter Eindruck entsteht: Damit meine ich nicht, dass die Literaturrecherche zeitlich immer komplett vor und das Überarbeiten immer nach dem Schreiben liegen sollte. Vielmehr greifen die Schritte oft ineinander.)

Vor einer angestrebten Umgestaltung des eigenen Schreibens sollte vor allem die folgende Frage geklärt sein:

Wie schreibe ich überhaupt?

Das bedeutet im Einzelnen z.B.:

  • Welche Raum nehmen die verschiedenen Tätigkeiten ein?
  • Was gelingt mir leicht, wobei tue ich mir schwer?
  • Welche Schreibstrategien setze ich, bewusst oder unbewusst, ein?

Solange das nicht geklärt ist, kann eine Lösung nicht greifen.

Bemühen wir mal zwei (zugegebenermaßen etwas schräge) Bilder:

Nummer 1: Wenn ich einen Fleck auf dem Sofa entdecke, renne ich besser auch nicht los in den Drogeriemarkt und kaufe wahllos fünf verschiedene Fleckenentferner. Erst schaue ich mir an, was den Fleck verursacht haben könnte und dann sehe ich noch nach, welche Mittelchen ich schon vorrätig habe.

Nummer 2: Wenn meine Ärztin mir sagt, ich solle gesünder leben, würde ich nicht gleichzeitig mit Intervallfasten, drei Sportarten und zehn Supplementen anfangen, sondern mich erst einmal fragen, wo genau das Problem liegt. Passt die Ernährung vielleicht schon? Ist mein Sportmix vielleicht schon ausgewogen? Dann sollte ich daran nicht drehen.

Was ich damit meine: Eine voreilige „Lösung“ verursacht oft neue Probleme (und wenn es nur bedeutet, dass ich ohne echten Gegenwert viel Geld ausgegeben habe). Diese voreilige Lösung ist eine Verschlimmbesserung.

Ok, wie geht es besser?

Schritt 1: Verschaffen Sie sich einen groben Überblick über die verschiedenartigen KI-Tools. Damit meine ich nicht, dass Sie alle Tools auf Herz und Nieren prüfen sollen. Nein, schauen Sie erst einmal, an welcher Stelle im Schreibprozess die Tools überhaupt ansetzen. Das reine Generieren von Text ist nur ein Bruchteil dessen, was möglich ist.

Schritt 2: Testen Sie gezielt, was Sie vermutlich (!) am weitesten bringt. Lesen Sie z.B. langsam, testen Sie ein Lese-Tool. Gefallen Ihnen Ihre Formulierungen oft nicht, testen Sie einmal, wie Sie den Überarbeitungsprozess mit einem KI-Tool gestalten können etc.

Schritt 3: Immer weiter im PDCA-Zyklus. „Plan – do – check – act“, das bedeutet einfach, dass Sie ausprobieren, was funktioniert, und ab da in einen kontinuierlichen Verbesserungsprozess einsteigen.

Eine steile These zum Abschluss

Es wird keinen durchoptimierten Workflow mit KI-Tools für das wissenschaftliche Arbeiten geben, genauso wenig wie es einen generell gültigen Workflow für das wissenschaftliche Arbeiten gibt.

Wir werden nicht 100 Texte in Tool 1 stecken, das Ergebnis in Tool 2 weiterverarbeiten und dann in Tool 3 aufs Knöpfchen drücken und den publikationsreifen Text vor uns sehen.

Tool-Gurus: Prove me wrong!

Aber selbst wenn: Würden wir das wirklich wollen?

P.S. Ganz genau so können Sie in der Folge auch mit Ihren Studierenden an die Sache herangehen. Wenn die Studierenden Sie fragen, welche Tools sie am besten für ihre Arbeiten einsetzen sollen, fragen Sie zurück: „Wie schreiben Sie überhaupt?“

Immer auf dem Laufenden bleiben?

Melden Sie sich für den Newsletter an! Sie werden benachrichtigt, wenn ein neuer Beitrag auf dem Blog erscheint, und können auch ein wenig hinter die Kulissen blicken.

Zitier-Indizes als Thema in der Lehre, oder „Wer viel misst, misst Mist…“

Immer wieder einmal ploppt in den Lehrveranstaltungen zum wissenschaftlichen Arbeiten die Frage nach dem Sinn und Nutzen von Zitier-Indizes auf.

In diesem Blogartikel hole ich erst ein wenig aus, um ein paar Informationen über Zitier-Indizes darzulegen (ohne Anspruch auf Vollständigkeit!), und ziehe dann am Ende meine Schlussfolgerungen für die Lehre.

Lassen wir zunächst einmal einen der Pioniere auf dem Gebiet der Zitier-Indizes, Eugene Garfield, zu Wort kommen.

„Citation frequency is a measure of research activity, or of communication about research activity. The measure is a sociometric device. In itself, the number of citations of a man’s work is no measure of significance. Like one scale on a nomogram, it must be used along with other scales to obtain anything useful or meaningful, particularly if the object of the evaluation is in any way qualitative.”

(Garfield, 1973, eigene Hervorhebung)

Trotzdem werden die Indizes als das Non-plus-Ultra angesehen, um wissenschaftliche Bedeutung und Qualität zu bewerten. Gleichzeitig werden sie jedoch auch kritisch hinterfragt. Nur hat dies bisher noch nicht zur Entwicklung eines wirklich guten Index geführt – vermutlich weil es den gar nicht geben kann.

Ein bisschen Hintergrund zu Zitier-Indizes

Der erste Zitier-Index (für Zeitschriftenartikel) war der von Garfield entwickelte Scientific Citation Index (SCI), der seit 1964 genutzt wird. Mittlerweile gibt es eine Vielzahl solcher Indizes; durchgesetzt haben sich der Journal Impact Factor (JIF) für die Bewertung von Journals und der Hirsch-Index (h-Index) für die Bewertung der Leistung einzelner Wissenschaftler:innen. Beide funktionieren nach dem gleichen Prinzip: Der Index misst die Anzahl der Zitationen im Verhältnis zur Anzahl der publizierten Artikel in einem Zeitraum von zwei Jahren bzw. zur Anzahl der (gesamten) eigenen Veröffentlichungen.

Die Indizes haben sich etabliert, da sie bis dato die einfachste Möglichkeit darstellen, wissenschaftlichen Output zu ranken. Allerdings ist Quantität ja nicht gleich Qualität, außerdem haben wir es nur mit einem vermeintlich objektiven Maßstab zu tun.

Moment mal – „vermeintlich objektiv“?

Leider ja. Schon die Auswahl der Journals, die überhaupt in den JIF aufgenommen werden, erfolgt willkürlich und ist hauptsächlich auf englischsprachige Zeitschriften beschränkt. Es kommt zu geografischen und thematischen Verzerrungen.

Zudem unterstützen die Indizes die systematische Benachteiligung von Frauen bzw. weiblich gelesenen Personen. Artikel, die von Wissenschaftlerinnen eingereicht werden, werden seltener angenommen als die von Wissenschaftlern. Hinzu kommt, dass ihre Artikel seltener zitiert werden – vor allem eben von Wissenschaftlern. (Nebenbei gesagt: Werden Zitierstile verwendet, die den Vornamen zu Initialen abkürzen, ändert sich das. Dann werden Artikel von Wissenschaftlerinnen zitiert als wären es Artikel von Wissenschaftlern.) Dies alles sorgt dafür, dass Männer in den Indizes wesentlich besser abschneiden als Frauen. 2021 waren so beispielsweise nur 11 Frauen unter den TOP 100 und sogar nur eine Frau unter den TOP 10 der meist zitierten Wissenschaftler:innen (https://recognition.webofscience.com/awards/highly-cited/2021/).

Erschwerend kommen weitere Faktoren hinzu: So bekommt etwa nur der/die jeweilige Hauptautor:in eines Artikels Credits für den Index und bei der Auswahl werden etablierte Journals/Autor:innen bevorzugt, so dass Wissenschaftler:innen, die am Anfang ihrer Karriere stehen, und innovative oder unkonventionelle Ideen wenig Chancen haben, sich überhaupt zu etablieren. Auch lässt sich der Index einfach manipulieren, z. B. durch Selbstzitierung.

Das Kernproblem der Zitier-Indizes

Das alles weist auch auf das Kernproblem des JIF und anderer Indizes hin: Die Häufigkeit, mit der eine Quelle zitiert wird, lässt keinen Rückschluss auf die Qualität zu. Zudem ist es stark von der Fachcommunity abhängig, wie häufig ein Artikel zitiert wird – ein sehr guter Artikel zu einem Nischenthema in einem kleinen Fachbereich wird deutlich seltener zitiert als ein schlechter Artikel zu einem populären Thema in einer der großen Disziplinen. Auch werden Artikel nicht immer zitiert, weil sie gut sind – bekanntlich dient manches Zitat auch dazu, um die Inhalte einer Quelle zu kritisieren oder zu widerlegen.

All diese Kritikpunkte führten unter anderem dazu, dass der JIF von Forschenden nicht mehr bei ERC-Anträgen angegeben werden darf. Trotzdem zählt er in Deutschland als der scientometrische Indikator: Dozierende raten ihren Studierenden, sich bei der Literaturauswahl für die eigenen Arbeiten daran zu orientieren, und Universitäten suchen spezifisch nach vielzitierten Wissenschaftler:innen, um ihr Ranking zu verbessern.

Aber warum eigentlich?

Ein simpler Grund ist, dass es aktuell keinen Indikator gibt, der wirklich besser ist. Der Eigenfactor, der SCImago Journal Rank (SJR) und der Source Normalized Impact per Paper (SNIP) beheben jeweils ein paar der genannten Schwachstellen, funktionieren aber immer noch nach dem gleichen Prinzip. Altmetrics (eine Wortschöpfung aus den beiden Wörtern „alternative“ und „metric“) verfolgen einen komplett anderen Ansatz, indem sie versuchen, den Impact einer Veröffentlichung zu erheben und dabei auch die Resonanz auf Social Media einzubeziehen.

Auch wird es eine echte Lösung im Sinn einer „Qualitätsprüfung“ nicht geben können. Die Vielzahl an Veröffentlichungen tatsächlich auf ihre Qualität hin zu prüfen, wäre nicht nur zeitaufwendig und kostenintensiv. Es wäre grundlegend fraglich, wer diese Qualität überhaupt bewerten sollte und anhand welcher Kriterien.

Messen
Foto von Miguel A Amutio

Zitier-Indizes als Thema in der Lehre

Für die Lehre heißt das für mich Folgendes: Je nach Vorkenntnissen der Studierenden diskutiere ich die Funktionsweise und die Aussagekraft von Zitier-Indizes auf unterschiedliche Arte.

  • Bei Studierenden, die gerade das Bachelor-Studium aufgenommen haben und an ihren ersten Arbeiten sitzen, ist dies erfahrungsgemäß kaum ein Thema. Sie sind noch zu sehr mit den Basics beschäftigt und ich weise auch nicht aktiv auf Zitier-Indizes hin.
  • Bei erfahreneren (Bachelor-)Studierenden in späteren Semestern kommt das Thema „Zitier-Indizes“ manchmal auf, weil jemand es bei befreundeten Studierenden aus anderen Studiengängen aufgeschnappt hat oder weil Lehrende es aufgebracht haben (Letzteres leider meist auf die unkritische Art im Sinne von „Zitieren Sie vorzugsweise aus hochgerankten Quellen.“). Dann erlaube ich mir, ein wenig Aufklärungsarbeit zu leisten und die Studierenden mit Argumenten auszustatten.
  • Bei fortgeschrittenen Studierenden in Master-Studiengängen und darüber hinaus setze ich das Thema selbst auf die Agenda und diskutiere es mit den Studierenden. Allerdings habe ich die Erfahrung gemacht, dass man dabei sehr gut aufpassen muss, wann das Ende dieser Diskussion erreicht ist. Allzu leicht machen sich sonst Resignation und eine gewisse „Wissenschaftsfeindlichkeit“ breit. Damit meine ich in diesem Kontext eine Haltung, die es der Wissenschaft zum Vorwurf macht, noch keine Lösung für diese komplexe Problem gefunden zu haben, und daraufhin die Wissenschaft generell in Frage stellt.

Was ist mir wichtiger als Zitier-Indizes?

Es dürfte klar geworden sein, dass ich Zitier-Indizes insgesamt nicht für einen guten Maßstab und schon gar nicht für das Maß aller Dinge für die Literaturauswahl der Studierenden erachte. Für wesentlich wichtiger halte ich es, gemeinsam mit den Studierenden kritisch zu diskutieren, wie neues Wissen entsteht und verbreitet wird oder eben auch nicht.

Derweil träume ich weiter von einer Wissenschaftspraxis,

  • in der nur wirklich veröffentlichungswerte Erkenntnisse veröffentlicht werden und in der nicht aus Karrieregründen mal wieder eine „Least publishable unit“ – sorry – „rausgehauen werden muss“,
  • in der auch innovative und unkonventionelle Ideen eine Chance haben, weil sie zu Ende gedacht und dann auch noch veröffentlicht und rezipiert werden können
  • in der Transparenz ein wichtiger Wert bei der Entstehung und Kommunikation von Wissen ist (hallo Open Science!) und in der nicht durch das unreflektierte Verwenden von Zitier-Indizes Verzerrungen reproduziert werden.

Wie thematisieren Sie Zitier-Indizes in der Lehre?